82 research outputs found

    (2+1)-Dimensional Quantum Gravity as the Continuum Limit of Causal Dynamical Triangulations

    Full text link
    We perform a non-perturbative sum over geometries in a (2+1)-dimensional quantum gravity model given in terms of Causal Dynamical Triangulations. Inspired by the concept of triangulations of product type introduced previously, we impose an additional notion of order on the discrete, causal geometries. This simplifies the combinatorial problem of counting geometries just enough to enable us to calculate the transfer matrix between boundary states labelled by the area of the spatial universe, as well as the corresponding quantum Hamiltonian of the continuum theory. This is the first time in dimension larger than two that a Hamiltonian has been derived from such a model by mainly analytical means, and opens the way for a better understanding of scaling and renormalization issues.Comment: 38 pages, 13 figure

    Statistics of reduced words in locally free and braid groups: Abstract studies and application to ballistic growth model

    Full text link
    We study numerically and analytically the average length of reduced (primitive) words in so-called locally free and braid groups. We consider the situations when the letters in the initial words are drawn either without or with correlations. In the latter case we show that the average length of the reduced word can be increased or lowered depending on the type of correlation. The ideas developed are used for analytical computation of the average number of peaks of the surface appearing in some specific ballistic growth modelComment: 29 pages, LaTeX, 7 separated Postscript figures (available on request), submitted to J. Phys. (A): Math. Ge

    Solutions to the ultradiscrete Toda molecule equation expressed as minimum weight flows of planar graphs

    Full text link
    We define a function by means of the minimum weight flow on a planar graph and prove that this function solves the ultradiscrete Toda molecule equation, its B\"acklund transformation and the two dimensional Toda molecule equation. The method we employ in the proof can be considered as fundamental to the integrability of ultradiscrete soliton equations.Comment: 14 pages, 10 figures Added citations in v

    Integrability of graph combinatorics via random walks and heaps of dimers

    Full text link
    We investigate the integrability of the discrete non-linear equation governing the dependence on geodesic distance of planar graphs with inner vertices of even valences. This equation follows from a bijection between graphs and blossom trees and is expressed in terms of generating functions for random walks. We construct explicitly an infinite set of conserved quantities for this equation, also involving suitable combinations of random walk generating functions. The proof of their conservation, i.e. their eventual independence on the geodesic distance, relies on the connection between random walks and heaps of dimers. The values of the conserved quantities are identified with generating functions for graphs with fixed numbers of external legs. Alternative equivalent choices for the set of conserved quantities are also discussed and some applications are presented.Comment: 38 pages, 15 figures, uses epsf, lanlmac and hyperbasic

    Chebyshev type lattice path weight polynomials by a constant term method

    Full text link
    We prove a constant term theorem which is useful for finding weight polynomials for Ballot/Motzkin paths in a strip with a fixed number of arbitrary `decorated' weights as well as an arbitrary `background' weight. Our CT theorem, like Viennot's lattice path theorem from which it is derived primarily by a change of variable lemma, is expressed in terms of orthogonal polynomials which in our applications of interest often turn out to be non-classical. Hence we also present an efficient method for finding explicit closed form polynomial expressions for these non-classical orthogonal polynomials. Our method for finding the closed form polynomial expressions relies on simple combinatorial manipulations of Viennot's diagrammatic representation for orthogonal polynomials. In the course of the paper we also provide a new proof of Viennot's original orthogonal polynomial lattice path theorem. The new proof is of interest because it uses diagonalization of the transfer matrix, but gets around difficulties that have arisen in past attempts to use this approach. In particular we show how to sum over a set of implicitly defined zeros of a given orthogonal polynomial, either by using properties of residues or by using partial fractions. We conclude by applying the method to two lattice path problems important in the study of polymer physics as models of steric stabilization and sensitized flocculation.Comment: 27 pages, 14 figure

    Information Gathering in Ad-Hoc Radio Networks with Tree Topology

    Full text link
    We study the problem of information gathering in ad-hoc radio networks without collision detection, focussing on the case when the network forms a tree, with edges directed towards the root. Initially, each node has a piece of information that we refer to as a rumor. Our goal is to design protocols that deliver all rumors to the root of the tree as quickly as possible. The protocol must complete this task within its allotted time even though the actual tree topology is unknown when the computation starts. In the deterministic case, assuming that the nodes are labeled with small integers, we give an O(n)-time protocol that uses unbounded messages, and an O(n log n)-time protocol using bounded messages, where any message can include only one rumor. We also consider fire-and-forward protocols, in which a node can only transmit its own rumor or the rumor received in the previous step. We give a deterministic fire-and- forward protocol with running time O(n^1.5), and we show that it is asymptotically optimal. We then study randomized algorithms where the nodes are not labelled. In this model, we give an O(n log n)-time protocol and we prove that this bound is asymptotically optimal

    Entanglement in gapless resonating valence bond states

    Full text link
    We study resonating-valence-bond (RVB) states on the square lattice of spins and of dimers, as well as SU(N)-invariant states that interpolate between the two. These states are ground states of gapless models, although the SU(2)-invariant spin RVB state is also believed to be a gapped liquid in its spinful sector. We show that the gapless behavior in spin and dimer RVB states is qualitatively similar by studying the R\'enyi entropy for splitting a torus into two cylinders, We compute this exactly for dimers, showing it behaves similarly to the familiar one-dimensional log term, although not identically. We extend the exact computation to an effective theory believed to interpolate among these states. By numerical calculations for the SU(2) RVB state and its SU(N)-invariant generalizations, we provide further support for this belief. We also show how the entanglement entropy behaves qualitatively differently for different values of the R\'enyi index nn, with large values of nn proving a more sensitive probe here, by virtue of exhibiting a striking even/odd effect.Comment: 44 pages, 14 figures, published versio

    Random Operator Approach for Word Enumeration in Braid Groups

    Full text link
    We investigate analytically the problem of enumeration of nonequivalent primitive words in the braid group B_n for n >> 1 by analysing the random word statistics and the target space on the basis of the locally free group approximation. We develop a "symbolic dynamics" method for exact word enumeration in locally free groups and bring arguments in support of the conjecture that the number of very long primitive words in the braid group is not sensitive to the precise local commutation relations. We consider the connection of these problems with the conventional random operator theory, localization phenomena and statistics of systems with quenched disorder. Also we discuss the relation of the particular problems of random operator theory to the theory of modular functionsComment: 36 pages, LaTeX, 4 separated Postscript figures, submitted to Nucl. Phys. B [PM

    Series expansions of the percolation probability for directed square and honeycomb lattices

    Full text link
    We have derived long series expansions of the percolation probability for site and bond percolation on directed square and honeycomb lattices. For the square bond problem we have extended the series from 41 terms to 54, for the square site problem from 16 terms to 37, and for the honeycomb bond problem from 13 terms to 36. Analysis of the series clearly shows that the critical exponent β\beta is the same for all the problems confirming expectations of universality. For the critical probability and exponent we find in the square bond case, qc=0.3552994±0.0000010q_c = 0.3552994\pm 0.0000010, β=0.27643±0.00010\beta = 0.27643\pm 0.00010, in the square site case qc=0.294515±0.000005q_c = 0.294515 \pm 0.000005, β=0.2763±0.0003\beta = 0.2763 \pm 0.0003, and in the honeycomb bond case qc=0.177143±0.000002q_c = 0.177143 \pm 0.000002, β=0.2763±0.0002\beta = 0.2763 \pm 0.0002. In addition we have obtained accurate estimates for the critical amplitudes. In all cases we find that the leading correction to scaling term is analytic, i.e., the confluent exponent Δ=1\Delta = 1.Comment: LaTex with epsf, 26 pages, 2 figures and 2 tables in Postscript format included (uufiled). LaTeX version of tables also included for the benefit of those without access to PS printers (note that the tables should be printed in landscape mode). Accepted by J. Phys.

    Associahedra via spines

    Full text link
    An associahedron is a polytope whose vertices correspond to triangulations of a convex polygon and whose edges correspond to flips between them. Using labeled polygons, C. Hohlweg and C. Lange constructed various realizations of the associahedron with relevant properties related to the symmetric group and the classical permutahedron. We introduce the spine of a triangulation as its dual tree together with a labeling and an orientation. This notion extends the classical understanding of the associahedron via binary trees, introduces a new perspective on C. Hohlweg and C. Lange's construction closer to J.-L. Loday's original approach, and sheds light upon the combinatorial and geometric properties of the resulting realizations of the associahedron. It also leads to noteworthy proofs which shorten and simplify previous approaches.Comment: 27 pages, 11 figures. Version 5: minor correction
    • …
    corecore